

Journal of Alloys and Compounds 330-332 (2002) 443-447

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

²H NMR study of sites and dynamics of deuterium and their isotope effects in $Ti_{0,1}V_{0,9}H_xD_y$ (x+y≈0.7)

Bilwadal Bandyopadhyay¹, Shigenobu Hayashi^{*}

National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Abstract

 $Ti_{0.1}V_{0.9}H_xD_y$ (x+y \approx 0.7) alloys have been studied by ²H NMR. ²H spectra revealed the sites of deuterium. In the H-rich samples, D atoms occupy both the octahedral (O) and tetrahedral (T) sites. In the deuteride, the D-rich sample and the sample of [H]/[D]=1, D atoms occupy the T sites. The activation energies of D diffusion were estimated from the temperature and frequency dependence of ²H spin-lattice relaxation times (T_1). The activation energy is higher in the O sites than in the T sites, as is the case for H diffusion. The activation energy in the O sites is higher for D diffusion than for H diffusion, and this isotope effect is negligible in the T sites. [©] 2002 Elsevier Science B.V. All rights reserved.

Keywords: Hydrogen storage materials; Gas-solid reactions; Order-disorder effects; Nuclear resonances

1. Introduction

Titanium (Ti) and vanadium (V) metals form a random alloy with a body-centered-cubic (b.c.c.) structure over wide ranges of composition and temperature [1]. The Ti–V alloys form stable hydrides as well as Ti and V metals do [2,3]. The crystal structure of monohydride Ti_{1-z}V_zH_x ($x \approx 1$) depends on the [V]/[Ti] ratio [3–5]. It is b.c.c. in the range $0.2 \le z \le 0.8$, while it is body-centered-tetragonal (b.c.t.) for $0.9 \le z \le 1.0$. On the other hand, the monodeuteride Ti_{1-z}V_zD_x ($x \approx 1$) always has the b.c.c. structure [6,7].

In pure vanadium, the crystal structures are different between monohydride and monodeuteride. If H and D atoms are contained simultaneously, the crystal structure is expected to depend on the [H]/[D] ratio. We studied V–H–D systems with a ([H]+[D])/[V] ratio of 0.8 by means of NMR, and found that the site occupancy, the diffusions of H and D, and furthermore the crystal structure depend on the [H]/[D] ratio [7].

In a previous work [8], we studied $Ti_{0.1}V_{0.9}$ -H–D systems by X-ray powder diffraction, differential scanning calorimetry (DSC) and ¹H NMR. The $Ti_{0.1}V_{0.9}$ -H–D systems have features similar to those of the V–H–D systems, although Ti addition shows some effects on the site occupancies and H diffusion. Similar alloy systems containing vanadium have also been studied by NMR [9–12].

In the present work, we have studied sites and dynamics of deuterium in $\text{Ti}_{0.1}\text{V}_{0.9}\text{H}_x\text{D}_y$ ($x+y\approx0.7$) alloys by ²H NMR, and have discussed the isotope effects by comparing with ¹H NMR results.

2. Experimental

The samples studied were $Ti_{0.1}V_{0.9}H_{0.63}D_{0.12}$, $Ti_{0.1}V_{0.9}H_{0.50}D_{0.20}$, $Ti_{0.1}V_{0.9}H_{0.35}D_{0.35}$, $Ti_{0.1}V_{0.9}H_{0.22}D_{0.52}$ and $Ti_{0.1}V_{0.9}D_{0.69}$, which were the same as those used in the previous work [8].

²H NMR has been measured by Bruker ASX200, MSL400 and ASX400 spectrometers. Larmor frequencies were 30.7 MHz for ASX200 and 61.4 MHz for MSL400 and ASX400. The pulse sequences used and the parameter settings were almost the same as those in the previous work [7].

^{*}Corresponding author. Present address: Institute for Materials & Chemical Process, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

E-mail address: hayashi.s@aist.go.jp (S. Hayashi).

¹Present address: Saha Institute of Nuclear Physics, Calcutta 700 064, India.

3. Results and discussion

3.1. ²H NMR spectra

²H NMR spectra have been recorded at 30.7 and 61.4 MHz in the temperature range between 140 and 420 K. 2 H Fig. 1 shows spectra at 30.7 MHz in $Ti_{0.1}V_{0.9}H_{0.63}D_{0.12}$, which are similar to those in $VH_{0.6}D_{0.2}$ [7]. The spectra consist of at least two components. The spectra at 140 K have been simulated by the procedures used previously [7], and the simulated results are similar to those in the previous work [7]. Component 1 has QCC (quadrupole coupling constant, $e^2 Qq/h$)=40 kHz, η_0 (asymmetry factor)=0.1, K_{iso} (isotropic Knight shift)=-41 ppm from D_2O and ΔK (magnitude of Knight shift anisotropy)=-130 ppm, whereas QCC=74 kHz, $\eta_0=0.1$, $K_{\rm iso} = -24$ ppm and $\Delta K = 260$ ppm for component 2. Components 1 and 2 are ascribed to D atoms in the T and O sites, respectively. The obtained parameters agree with those in the V-H-D alloys [7], though the little bit lower resolution of the fine structures might suggest a small distribution of those parameters.

With increase in temperature, first the inner doublet corresponding to the T sites disappears at \sim 200 K, and in place of it the narrow central component grows up. The outer doublet corresponding to the O sites remains the line shape up to \sim 240 K. Above 240 K, the doublet peak disappears, though the asymmetric line shape is observed up to \sim 380 K. The diffusion of D atoms in the O sites becomes isotropic above 380 K, much higher than that in the T sites (\sim 200 K). These results demonstrate that the D atoms in the T site have higher mobility than D in the O sites.

The ²H spectra of Ti_{0.1}V_{0.9}H_{0.22}D_{0.52} obtained at 30.7 MHz are shown in Fig. 2. Ti_{0.1}V_{0.9}D_{0.69} and Ti_{0.1}V_{0.9}H_{0.35}D_{0.35} show similar line shapes. The spectra of the three samples at 140 K can be simulated only by component 1. D atoms occupy the ordered T sites at low temperatures, and the ordering remains up to ~200 K. The ordered D sublattice collapses by the phase transition from the $\delta_{\rm D}$ phase to the $\alpha_{\rm D}$ phase, accompanied by the growth

Fig. 1. Temperature dependence of ^2H NMR spectra in $Ti_{0.1}V_{0.9}H_{0.63}D_{0.12},$ measured at 30.7 MHz.

Fig. 2. Temperature dependence of ${}^{2}H$ NMR spectra in $Ti_{0.1}V_{0.9}H_{0.22}D_{0.52}$, measured at 30.7 MHz.

of the narrow central line. After the phase transition, the doublet disappears, and only the narrow central line is observed, reflecting the isotropic diffusion of D atoms. The doublet begins to collapse at 210, 200 and 220 K in $Ti_{0.1}V_{0.9}H_{0.35}D_{0.35}$, $Ti_{0.1}V_{0.9}H_{0.22}D_{0.52}$ and $Ti_{0.1}V_{0.9}D_{0.69}$, respectively, and the narrowing completes at 230, 220 and 240 K, respectively. These temperature ranges agree with the DSC results [8].

 $Ti_{0.1}V_{0.9}H_{0.50}D_{0.20}$ shows intermediate line shapes between $Ti_{0.1}V_{0.9}H_{0.35}D_{0.35}$ and $Ti_{0.1}V_{0.9}H_{0.63}D_{0.12}$. Component 1 (the T site) and component 2 (the O site) are of comparable magnitudes.

In summary, both the O and T sites are occupied in $Ti_{0.1}V_{0.9}H_{0.63}D_{0.12}$ and $Ti_{0.1}V_{0.9}H_{0.50}D_{0.20}$, though the O occupation is larger in the former than in the latter. Only the T site is occupied in $Ti_{0.1}V_{0.9}H_{0.35}D_{0.35}$, $Ti_{0.1}V_{0.9}H_{0.22}D_{0.52}$ and $Ti_{0.1}V_{0.9}D_{0.69}$. Generally speaking, the b.c.t. lattice prefers O site occupation, whereas the b.c.c. lattice prefers T site occupation. However, only the T site is occupied in $Ti_{0.1}V_{0.9}H_{0.35}D_{0.35}$ which is predominantly b.c.t. Consequently, the site occupancy of D atoms agrees with that of H atoms previously reported [8].

3.2. ²H spin-lattice relaxation times

²H T_1 values have been measured at 30.7 and 61.4 MHz in the temperature range between 140 and 420 K. The T_1 values are determined from the recovery of peak amplitudes in the Fourier-transformed (FT) spectra. In all measurements, the time dependence of the peak amplitudes is single exponential within experimental accuracy. The spin-lattice relaxation times after subtracting the contribution of conduction electrons are plotted in Figs. 3–5, which include the contributions from the dipolar interaction and from the quadrupole interaction, being denoted as $T_{1(d+q)}$. ²H Korringa constants ($T_{1e}T$) are estimated from the respective ¹H Korringa constant multiplied by 42.44 ($=\gamma_{\rm H}^2/\gamma_{\rm D}^2$), which are listed in Table 1. For Ti_{0.1}V_{0.9}D_{0.69}, the ²H Korringa constant is assumed to be same as that of Ti_{0.1}V_{0.9}H_{0.22}D_{0.52}.

The dependence of ²H $T_{1(d+q)}$ on the resonance frequency and temperature has been analyzed by the method in the previous work [7], using the following equation:

$$(T_{1d})^{-1} = f_1 \Omega^{\beta^{-1}} M_{\rm DV} \left[\frac{0.5\tau_{\rm D}^{\beta}}{1 + \{(1 - \gamma_{\rm V}/\gamma_{\rm D})\omega_{\rm D}\tau_{\rm D}\}^{1+\alpha}} + \frac{1.5\tau_{\rm D}^{\beta}}{1 + (\omega_{\rm D}\tau_{\rm D})^{1+\alpha}} + \frac{3\tau_{\rm D}^{\beta}}{1 + \{(1 + \gamma_{\rm V}/\gamma_{\rm D})\omega_{\rm D}\tau_{\rm D}\}^{1+\alpha}} \right]$$
(1)

where $\omega_{\rm D}$, $\gamma_{\rm D}$ and $\tau_{\rm D}$ are the angular resonance frequency, the gyromagnetic ratio and the mean residence time of ²H, respectively. $M_{\rm DV}$ is the second moment caused by the ²H-⁵¹V dipolar interaction. β is fixed to 1 in this work, α ($0 \le \alpha \le 1$) reflects the deviation from BPP equation [13],

Fig. 3. ²H spin-lattice relaxation times caused by dipole–dipole and/or quadrupole interaction in $\text{Ti}_{0.1}\text{V}_{0.9}\text{H}_{0.63}\text{D}_{0.12}$ (the O site) at 30.7 (**■**) and 61.4 MHz (\Box), and their simulated results indicated by solid and chain lines.

Fig. 4. ²H spin-lattice relaxation times caused by dipole–dipole and/or quadrupole interaction in $Ti_{0.1}V_{0.9}H_{0.50}D_{0.20}$ at 30.7 (**I**) and 61.4 MHz (**I**), and their simulated results indicated by solid lines. The chain and dotted lines indicate components used for the simulation, corresponding to the contributions of the O and T sites, respectively.

Fig. 5. ²H spin-lattice relaxation times caused by dipole–dipole and/or quadrupole interaction in $Ti_{0.1}V_{0.9}H_{0.35}D_{0.35}$ at 30.7 (**II**) and 61.4 MHz (**II**), and their simulated results indicated by solid lines. The chain and dotted lines indicate components used for the simulation, corresponding to the contributions of the O and T sites, respectively.

and f_1 is a multiplication factor. A distribution of the activation energy is not introduced, since the distribution of the site symmetry is small. The fitted curves are given in the figures by lines, and the parameters obtained are listed in Table 1. E_D is the activation energy for D diffusion.

In Ti_{0.1}V_{0.9}H_{0.63}D_{0.12}, there is a minimum value of 0.12 s at 300 K when measured at 30.7 MHz, while the minimum at 61.4 MHz is 0.28 s at ~330 K, as shown in Fig. 3. By analogy with ¹H T_1 , the ²H T_1 values above 250

Table 1 ²H Korringa constants and parameters of deuterium diffusion

K predominantly reflect the D motion in the O site. Although 2 H spectra confirm the existence of D atoms in two kinds of sites, the O and T sites, parameters of the D diffusion could not be estimated for the T sites.

The temperature dependence of T_1 in Ti_{0.1}V_{0.9}H_{0.50}D_{0.20} (Fig. 4) shows a change of slope in the low temperature side of the T_1 minimum, probably originating from the motion of D atoms in the T sites. The activation energy is much smaller in the T sites than in the O sites. With increase in temperature diffusion between the T sites takes place. Further increase in temperature leads to diffusion of D atoms in the O sites. The diffusion between the O sites might use the T sites as the diffusion path.

The rest of the samples, viz. $Ti_{0.1}V_{0.9}H_{0.35}D_{0.35}$ (Fig. 5), $Ti_{0.1}V_{0.9}H_{0.22}D_{0.52}$, and $Ti_{0.1}V_{0.9}D_{0.69}$ exhibit two minima at ~330 and 230 K. The former is related to the motion of deuterium in the O sites, and the latter to the T sites. ²H spectra indicate that the D atoms occupy the ordered T sites in the $\delta_{\rm D}$ phase. Hopping among the ordered T sites neither averages out the structured quadrupolar line shape, nor produces effective quadrupolar spin-lattice relaxation. Above 240 K in the $\alpha_{\rm D}$ phase, where the deuterium sublattice becomes disordered, there might be considerable quadrupolar relaxation of ²H, since the quadrupolar line shape collapses. The parameters of deuterium diffusion change around the phase transition temperature, and, moreover, it seems that there exist simultaneously more than one type of motion at high temperatures. The O sites might be used as a diffusion pathway, as has been suggested in the V-H-D alloys [7].

In summary, the activation energy of D diffusion is higher in the O sites than in the T sites, as is the case for H diffusion. The activation energy in the O sites is higher for D diffusion than for H diffusion, and this isotope effect is negligible in the T sites. D addition to the hydride decreases the activation energies of D diffusions in the O

Sample	T _{1e} T ^a (s K)	D site	$ au_{0\mathrm{D}}^{\mathrm{b}}$ (s)	$E_{\rm D}$ (eV/atom)	α	f_1
$Ti_{0.1}V_{0.9}H_{0.50}D_{0.20}$	5560	0	13×10^{-14}	0.31	0.25	1.40
		Т	4.2×10^{-14}	0.225	0.45	0.30
$Ti_{0.1}V_{0.9}H_{0.35}D_{0.35}$	5860	T ^c	4.2×10^{-14}	0.225	0.60	1.25
		T^{d}	4.2×10^{-14}	0.20	0.60^{e}	1.25 ^e
		O′ ^d	13×10^{-14}	0.33	0.18	0.90
$Ti_{0.1}V_{0.9}H_{0.22}D_{0.52}$	8830	T ^c	4.2×10^{-14}	0.225	0.60	1.40
		T^{d}	4.2×10^{-14}	0.205	0.60^{e}	1.40 ^e
		O′ ^d	13×10^{-14}	0.31	0.25	0.90
$Ti_{0.1}V_{0.9}D_{0.69}$	8830 ^e	T^{c}	4.2×10^{-14}	0.24	0.50	1.20
		T^d	4.2×10^{-14}	0.22	0.50°	1.20 ^e
		O′ ^d	13×10^{-14}	0.345	0.20	0.60

^a Estimated from ¹H Korringa constants [8].

^b Assumed to be $1.4\tau_{0H}$ [6,7].

^c Below 220 K.

^d Above 240 K.

^e Assumed.

sites. The Ti addition decreases the activation energies of D diffusions in the O sites. The D mobility in the T sites is not affected by the Ti addition or by the [H]/[D] ratio.

4. Conclusions

 $Ti_{0.1}V_{0.9}$ -H-D alloys with $([H]+[D])/([Ti]+[V])\approx 0.7$ have been studied by means of ²H NMR, and the following conclusions have been obtained.

- 1. In the H-rich samples, D atoms occupy both the O and T sites, and the D atoms in the T sites diffuse faster than those in the O sites. In the deuteride, the D-rich sample, and the sample of [H]/[D]=1, D atoms occupy the T sites. Ti addition enhances the occupation of the T sites. In the δ_D phase, D atoms diffuse among the ordered T sites. In the α_D phase, the diffusion takes place between the disordered T sites, and the O sites also contribute to the diffusion.
- 2. The activation energy of D diffusion is higher in the O sites than in the T sites. The activation energy in the O sites is higher for D diffusion than for H diffusion, and this isotope effect is negligible in the T sites. D addition to the hydride and Ti addition decrease the activation energies of D diffusion in the O sites. The mobility in the T sites is not affected by the Ti addition or by the [H]/[D] ratio.

Acknowledgements

The authors are grateful to Dr E. Akiba of our institute for the syntheses of dihydrides. B.B. wishes to acknowledge the STA fellowship given by the Science and Technology Agency of Japan.

References

- M. Hansen (Ed.), Constitution of Binary Alloys, 2nd Edition, McGraw-Hill, New York, 1958, p. 1241.
- [2] H. Nagel, R.S. Perkins, Z. Metallkd. 66 (1975) 362.
- [3] S. Ono, K. Nomura, Y. Ikeda, J. Less-Common Met. 72 (1980) 159.
- [4] S. Hayashi, K. Hayamizu, J. Less-Common Met. 161 (1990) 61.
- [5] T. Ueda, S. Hayashi, Y. Nakai, S. Ikeda, Phys. Rev. B 51 (1995) 5725.
- [6] T. Ueda, S. Hayashi, J. Alloys Comp. 256 (1997) 145.
- [7] B. Bandyopadhyay, S. Hayashi, Phys. Rev. B 60 (1999) 10302.
- [8] B. Bandyopadhyay, S. Hayashi, J. Alloys Comp. 305 (2000) 136.
- [9] A.V. Skipov, M.Yu. Belyaev, A.P. Stepanov, L.N. Padurets, E.I. Sokolova, J. Alloys Comp. 190 (1993) 171.
- [10] L. Lichty, J. Shinar, R.G. Barnes, D.R. Torgeson, D.T. Peterson, Phys. Rev. Lett. 55 (1985) 2895.
- [11] E.H. Sevilla, R.M. Cotts, Phys. Rev. B 37 (1988) 6813.
- [12] D.S. Sibirtsev, Yu.G. Cherepanov, A.V. Skripov, J. Alloys Comp. 278 (1998) 21.
- [13] N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73 (1948) 679.